Homework 6 - Kyla Yuijiri (key243)

NEAT with Ms. Pacman and Space Invaders

For this homework, | wanted to explore the NEAT algorithm. | had no idea where to start with my own
algorithm and the NEAT algorithm seemed a little easier to understand than SB-3 given the time limits at the
end of the semester.

| had problems initially because | did not understand that | needed to download my own roms to be able to
use these games. In the lab, the MountainCar environment was included with gym so | thought that was the
same for Ms. Pacman and Space Invaders. However, it was not. | found roms for both games at
atarimania.com. | used the original Atari 2600 versions for both of them (Space Invaders, Ms. Pacman). |
originally wanted to do Breakout, but for some reason, the rom from the website did not work with gym.

kylayujiri@Kylas-MBP hwé % ale—import-roms roms/
ms_pacman roms/mspacman.bin

[NOT SUPPORTED] roms/breakout.bin

Imported 1 / 2 ROMs

| based my files on the example code provided by neat-python. Specifically, | used their single pole
balancing files: evolve-feedforward.py, config-feedforward, and test-feedforward.py.

Ms. Pacman

From the gym documentation's specs on Ms. Pacman, | learned that the action space is a single integer
[0,18) and the observation space is (210, 160, 3). | used cv2 to reduce the observation space to 42 x 32 and

made it grayscale. This made the input size for the feedforward network 1,344.

| originally had render='human' instead of render='rgb array' solcould see all the learning
happening visually. It was cool to see, but very slow so | changed it to the latter so that | could get results
faster. Here is an image of the renderings:

http://www.atarimania.com/index.html
http://www.atarimania.com/game-atari-2600-vcs-space-invaders_s6947.html
http://www.atarimania.com/game-atari-2600-vcs-ms-pac-man_s6876.html
https://github.com/CodeReclaimers/neat-python
https://github.com/CodeReclaimers/neat-python/blob/4928381317213ee3285204ae1f2a086286aa3a10/examples/single-pole-balancing/evolve-feedforward.py
https://github.com/CodeReclaimers/neat-python/blob/4928381317213ee3285204ae1f2a086286aa3a10/examples/single-pole-balancing/config-feedforward
https://github.com/CodeReclaimers/neat-python/blob/4928381317213ee3285204ae1f2a086286aa3a10/examples/single-pole-balancing/test-feedforward.py
https://www.gymlibrary.ml/environments/atari/ms_pacman/

& Python Window & O ® 3 ¢ suE) & Q 8 MonMay16 957 AM
N

mspacman|

Powered by Stella
rcade Learning Environment (version 0.7.5+db37282)
v erallal

cvtColor(observg ® The Arcade Learning Environment

eshape(observati

on:
nceIgnoreState: Exist
/var/folders/f1/wvlc
append (v)

> m neuron-gemo
> [openai-lander

> i picture2d def eval_gen

Mmspacman/mspacman_neat.py 56:53

For the config file, | left most of the values alone except for fitness threshold , pop_size ,

num_inputs , num hidden , num outputs , activation default ,and max stagnation .
I originally had fitness threshold setto 200, but the algorithm finished very fast. | realized that 200

was not a very high score for Ms. Pacman.

kylayujiri@Kylas-MBP mspacman % python3 mspacman_neat.py

skkokokk Running generation @ skskskokk

~

A.L.E: Arcade Learning Environment (version ©.7.5+db37282)
[Powered by Stellal

A.L.E: Arcade Learning Environment (version .
[Powered by Stellal

A.L.E: Arcade Learning Environment (version @.
[Powered by Stellal

A.L.E: Arcade Learning Environment (version @.
[Powered by Stellal

A.L.E: Arcade Learning Environment (version @.
[Powered by Stellal

A.L.E: Arcade Learning Environment (version @.
[Powered by Stellal

A.L.E: Arcade Learning Environment (version ©.7.5+db37282)
[Powered by Stellal

A.L.E: Arcade Learning Environment (version ©.7.5+db37282)
[Powered by Stellal

Population's average fitness: 78.60000 stdev: 41.37681

Best fitness: 240.00000 - size: (3, 2017) - species 18 - id 18

~

.5+db37282)

~

.5+db37282)

~

.5+db37282)

~

.5+db37282)

~

.5+db37282)

Best individual in generation @ meets fitness threshold — complexity: (3, 2017)

Key: 18

Fitness: 240.0

Nodes:
0 DefaultNodeGene(key=0, bias=-1.202876822380358, response=1.0, activation=sigmoid, aggregation=sum)
35 DefaultNodeGene(key=35, bias=1.6094863512960236, response=1.0, activation=sigmoid, aggregation=sum)
36 DefaultNodeGene(key=36, bias=-2.2473260220552422, response=1.0, activation=sigmoid, aggregation=sum)

Connections:
DefaultConnectionGene(key=(-1344, 35), weight=0.18039620342535387, enabled=True)
DefaultConnectionGene(key=(-1343, @), weight=1.3015636215850566, enabled=True)
DefaultConnectionGene(key=(-1343, 35), weight=-1.2548109642195533, enabled=True)
DefaultConnectionGene(key=(-1342, @), weight=2.18533180313882, enabled=True)
NDefaultConnectionGene(kev=(-1342. 34). weiaht=0.5748AR277169482. enahled=True)

| played Ms. Pacman mysel

f and found out that 2700 is the score when | eat all the dots. | set the

fitness threshold to 2700, but | realized this was a mistake when the fitness was nowhere near 2700

after a good while. At this point, the pop size was 50 and the max stagnation was 30 so each

generation took a long time and less effective species did not die off quickly.

kylayujiri@Kylas-MBP mspacman-recurrent % python3 mspacman_neat.py

*¥*k*kk Running genera

A.L.E: Arcade Learning
[Powered by Stellal
A.L.E: Arcade Learning
[Powered by StellalA.L
[Powered by Stellal

A.L.E: Arcade Learning
[Powered by Stellal
A.L.E: Arcade Learning
[Powered by Stellal
A.L.E: Arcade Learning
[Powered by Stellal
A.L.E: Arcade Learning
[Powered by Stellal
A.L.E: Arcade Learning
[Powered by Stellal
Population's average f
Best fitness: 450.0000
Average adjusted fitne
Mean genetic distance
Population of 181 memb
ID age size fit

tion @ *kxkkkk

Environment (version ©.7.5+db37282)
Environment (version ©.7.5+db37282)

.E: Arcade Learning Environment (version 0.7.5+db37282)
Environment (version ©.7.5+db37282)
Environment (version ©.7.5+db37282)
Environment (version ©.7.5+db37282)
Environment (version ©0.7.5+db37282)
Environment (version ©.7.5+db37282)
itness: 94.40000 stdev: 77.64432

@ - size: (3, 1346) - species 26 - id 26
ss: 0.088

3.372, standard deviation ©.527

ers in 50 species:
ness adj fit stag

1] 2 70.0 0.826 %]
2] 2 60.0 0.000 2]
3 2] 2 70.0 0.026 %]
4] 2 60.0 0.000 2]
5] 2 70.0 0.026 2]
6 0 2 70.0 0.026 2]
7 (] 2 60.0 0.000 2]
8 0 2 60.0 0.000 [}
9 2] 2 350.0 0.744 %]
1e] 2 60.0 0.000 %]
11 2] 2 70.0 0.826 %]
12 2] 2 210.0 0.385 2]
13] 2 60.0 0.000 2]
14] 2 60.0 0.000 2]
15 0 2 60.0 9.000 2]
16 0 2 60.0 9.000 2]
17] 2 210.0 0.385 2]
18] 2 60.0 0.000 2}
19 2] 2 60.0 0.000 %]
20] 2 60.0 0.000 %]
21] 2 70.0 0.026 2]
22 2] 2 210.0 0.385 %]
23] 2 60.0 0.000 2]
24] 2 90.0 0.077 2]
25 0 2 70.0 0.026 2]
26 (] 3 450.0 1.000 2]
27 0 2 60.0 0.000 [}
28 2] 2 60.0 0.000 %]
29] 2 60.0 0.000 %]
30 2] 2 60.0 0.000 %]
31 2] 2 70.0 0.026 2]
32] 2 60.0 0.000 2]
33] 2 60.0 0.000 2]

The algorithm seemed to be reaching fairly high levels of fitness, but it would just not end. | did not know
how to stop the program, but still save the winner.

sokkkskk Running generation 137 skeksksksksk

Population's average fitness: 181.80000 stdev: 258.64795
Best fitness: 1640.00000 — size: (6, 1200) — species 52 - id 4361
Average adjusted fitness: ©.078
Mean genetic distance 2.212, standard deviation 0.966
Population of 5@ members in 2 species:
1D age size fitness adj fit stag

52 34 27 1640.0 0.073 2

53 33 23 880.0 0.083 18
Total extinctions: @
Generation time: 13.884 sec (13.368 average)

Because | didn't know how to save it, | just terminated the program. | changed the fitness threshold to
a more reasonable number (1000). | also changed the pop size to 30 andthe max stagnation tothe
documentation's recommended default of 15. The algorithm was able to reach the fitness threshold in

20 generations.

xkkkkk Running generation 20 sxkkkkk

Population's average fitness: 240.50000 stdev: 377.53775
Best fitness: 1720.00000 — size: (3, 1319) - species 21 - id 130

Best individual in generation 20 meets fitness threshold — complexity: (3, 1319)

Key: 130

Fitness: 1720.0

Nodes:
0 DefaultNodeGene(key=0, bias=0.08288632779720026, response=1.0, activation=sigmoid, aggregation=sum)
13 DefaultNodeGene(key=13, bias=1.8593847900628724, response=1.0, activation=sigmoid, aggregation=sum)
14 DefaultNodeGene(key=14, bias=-0.9204526506933759, response=1.0, activation=sigmoid, aggregation=sum)

Connections:
DefaultConnectionGene(key=(-1344, 14), weight=-0.373289320316816, enabled=True)
DefaultConnectionGene(key=(-1343, 13), weight=1.441349100246275, enabled=True)
DefaultConnectionGene(key=(-1343, 14), weight=2.843659270249499, enabled=True)
DefaultConnectionGene(key=(-1342, 13), weight=-1.5820797378187264, enabled=True)
DefaultConnectionGene(key=(-1342, 14), weight=0.31503778816268696, enabled=True)
DefaultConnectionGene(key=(-1341, 14), weight=0.6469997402139731, enabled=True)
DefaultConnectionGene(key=(-1340, 13), weight=-1.605250164417146, enabled=True)
DefaultConnectionGene(key=(-1338, 13), weight=0.6136163311742577, enabled=True)
DefaultConnectionGene(key=(-1338, 14), weight=1.2421699957656658, enabled=True)
DefaultConnectionGene(key=(-1337, 14), weight=—-0.0548809665585035, enabled=True)
DefaultConnectionGene(key=(-1336, 14), weight=1.444733369747615, enabled=True)
DefaultConnectionGene(key=(-1335, 13), weight=2.0149263204634904, enabled=True)

When | ran the winning genome with testneat.py , though, | was a little disappointed in what | saw. I'm
not sure if my expectation was unrealistic, but Ms. Pacman did not move in an efficient way. She moved a
little, collected some dots, and then stopped until a ghost killed her. This happened for all 3 lives, but the
dots collected resulted in the score that met my threshold.

After this, | looked back at the chart from the lecture of different Atari games and their performance versus
humans. | noticed that Ms. Pacman was near the bottom which could explain this behavior.

To plot the performance of the agent, | had to manually take the fitness from the terminal and graph each
one for each generation. NEAT provided numbers for the populations average fitness for that generation as
well as the best fitness for that generation, so | plotted both.

Generation Average Best

0 79 210
1 76.25 210) _
2 75.85366 210 Generation vs Average and Best Fitness
3 76.25 210 == Average == Best
4 75.09756 210 2000
5 76.25 210
6 75.85366 210
7 76.25 210 1500
8 76.09756 210
9 76.25 210 @

o 1000
10 76.09756 210 £

w
1 76.25 210
12 76.09756 210 500
13 76.25 210
14 75.09756 210

0

15 76.25 210 0 5 10 ppe 2
16 86.5 440
17 105 440 Generation
18 111.5 440
19 136.5 550
20 240 1720

Space Invaders

| wanted to see if the mediocre outcome from Ms. Pacman was because of the limitations of my
implementation of the NEAT algorithm or because the game is Ms. Pacman. | chose Space Invaders because
it is higher up in the chart from the lecture than Ms. Pacman.

I originally ran it with the same config settings as Ms. Pacman, except | changed the fitness threshold .
| started with the fitness threshold as 100 and 200, but the learning was very quick. | then changed it
to 700.

After | changed it to 700, the algorithm took 75 generations to reach that threshold.

*kkkkk Running generation 75 sokkkokk

Population's average fitness: 283.33333 stdev: 196.77539
Best fitness: 750.00000 - size: (5, 11) - species 32 - id 1420

Best individual in generation 75 meets fitness threshold - complexity: (5, 11)

Key: 1420

Fitness: 750.0

Nodes:
0 DefaultNodeGene(key=0, bias=0.6033729636159819, response=1.0, activation=sigmoid, aggregation=sum)
255 DefaultNodeGene(key=255, bias=1.5276150716671242, response=1.0, activation=sigmoid, aggregation=sum)
266 DefaultNodeGene(key=266, bias=0.260080263293228, response=1.0, activation=sigmoid, aggregation=sum)
320 DefaultNodeGene(key=320, bias=0.18670588445247138, response=1.0, activation=sigmoid, aggregation=sum)
335 DefaultNodeGene(key=335, bias=-1.0522400584471436, response=1.0, activation=sigmoid, aggregation=sum)

Connections:
DefaultConnectionGene(key=(-999, @), weight=0.4542108187952849, enabled=True)
DefaultConnectionGene(key=(-870, @), weight=-0.563397839211028, enabled=False)
DefaultConnectionGene(key=(-870, 266), weight=1.1662780321089128, enabled=False)
DefaultConnectionGene(key=(-870, 335), weight=1.0, enabled=True)

| didn't want to manually graph all 75 generations, so | made two graphs: one with the first 21 generations
and one with the last 21 generations.

First 21 Generations vs Average and Best Fitness:

Generation Average Best

0 106.66667 285 . .

1 90.66667 300 Generation vs Average and Best Fitness

2 89.16667 295 = Average = Best
3 95 295 600

4 94.58333 340

5 90.16667 295

6 92.33333 295

7 97 525

8 9 525 400

9 96.66667 295

10 94.91667 325 g

1 90.33333 315 Z

12 94.41667 285 200

13 93.75 295

14 93.33333 315

15 93.91667 295

16 163.4375 295

17 223.27586 440 % 5 0 5 20
18 205 305

19 230 540 Generation
20 192.66667 440

Last 21 Generations vs Average and Best Fitness:

Generation Average Best
55 345.16667 425 . .
56 308.33333 445 Generation vs Average and Best Fitness
57 2725 425 == Average == Best
58 278.5 425 800
59 273.70968 425
60 229.16667 425
61 262.66667 425
62 256.33333 425 600
63 278 450
64 157.66667 425
65 232.33333 565 g a0
66 248 565 &
67 229.66667 650
68 275 545 200
69 289.16667 540
70 280.33333 565
71 273.83333 510
72 342 540 %ss 60 65 70 75
73 297.5 550
74 355.16667 685 Generation
75 283.33333 750

Looking at the rendering of the winner, it seemed like the agent preferred staying in one spot while moving
and it did not try to avoid any of the bullets from the aliens.

| wanted to see if changing the number of hidden layers would do anything so | kept all settings the same
except for changing the number of hidden layers from 2 to 6.

This time, the algorithm only took 21 generations to get 750 points (fitness) which was a significant
improvement over the previous 75 generations.

skkkkk Running generation 21 sekkskskk

Population's average fitness: 225.00000 stdev: 132.28757
Best fitness: 700.00000 - size: (7, 3307) - species 10 - id 106

Best individual in generation 21 meets fitness threshold - complexity: (7, 3307)

Key: 106

Fitness: 700.0

Nodes:
@ DefaultNodeGene(key=0, bias=0.6631951879237283, response=1.0, activation=sigmoid, aggregation=sum)
55 DefaultNodeGene(key=55, bias=0.755284815949017, response=1.0, activatio igmoid, aggregation=sum)
56 DefaultNodeGene(key=56, bias=-0.4701829497721034, response=1.0, activation=sigmoid, aggregation=sum)
57 DefaultNodeGene(key=57, bias=-1.107049796014014, response=1.0, activation=sigmoid, aggregation=sum)
58 DefaultNodeGene(key=58, bias=0.3707650538604555, response=1.0, activation=sigmoid, aggregation=sum)
60 DefaultNodeGene(key=60, bias=1.0062139446533034, response=1.0, activation=sigmoid, aggregation=sum)
186 DefaultNodeGene(key=186, bias=0.33248702163577837, response=1.8, activation=sigmoid, aggregation=sum)

Connections:
DefaultConnectionGene(key=(-1344, 57), weight=-0.09765356943633968, enabled=True)
DefaultConnectionGene(key=(-1344, 58), weight=-0.6367993310828107, enabled=True)
DefaultConnectionGene (ke -1344, 60), weight=0.7908670316428189, enabled=True)
DefaultConnectionGene (ke -1343, 57), weight=1.0093389515442757, enabled=True)
DefaultConnectionGene(kev=(-1343. 60). weiaht=-0.19769664483807348. enabled=True)

Here is the graph of generation vs average and best fitness:

Generation Average Best
0 119.66667 280
1 1325 405 Generation vs Average and Best Fitness
2 139.16667 555 = Average = Best
3 128.08333 405
4 129.75 355 800
5 138.25 360
6 133.6667 405
7 132.08333 670 600
8 121.16667 390
9 136.25 405
10 132.33333 545 "
1 130 545 g 400
12 128.66667 405 i
13 130.41667 380
14 130.16667 375
15 127.33333 405 20
16 150.92105 375
17 160.42857 350
18 173.06452 395 0
19 217.41935 385 0 5 1 1 2
20 197.90323 545 Generation
21 225 700

| also tried changing the network to a recurrent one from a feedforward one, but did not find significant
changes in performance. This is not shown, but all | did to try it out was change feed forward to False

and replace net = neat.nn.FeedForwardNetwork.create (genome, config) Wwith net =

neat.nn.RecurrentNetwork.create (genome, config)

