
Homework 6 - Kyla Yujiri (key243)

NEAT with Ms. Pacman and Space Invaders

For this homework, I wanted to explore the NEAT algorithm. I had no idea where to start with my own

algorithm and the NEAT algorithm seemed a little easier to understand than SB-3 given the time limits at the

end of the semester.

I had problems initially because I did not understand that I needed to download my own roms to be able to

use these games. In the lab, the MountainCar environment was included with gym so I thought that was the

same for Ms. Pacman and Space Invaders. However, it was not. I found roms for both games at

atarimania.com. I used the original Atari 2600 versions for both of them (Space Invaders, Ms. Pacman). I

originally wanted to do Breakout, but for some reason, the rom from the website did not work with gym.

I based my files on the example code provided by neat-python. Specifically, I used their single pole

balancing files: evolve-feedforward.py, config-feedforward, and test-feedforward.py.

Ms. Pacman

From the gym documentation's specs on Ms. Pacman, I learned that the action space is a single integer

[0,18) and the observation space is (210, 160, 3). I used cv2 to reduce the observation space to 42 x 32 and

made it grayscale. This made the input size for the feedforward network 1,344.

I originally had render='human'  instead of render='rgb_array'  so I could see all the learning

happening visually. It was cool to see, but very slow so I changed it to the latter so that I could get results

faster. Here is an image of the renderings:

http://www.atarimania.com/index.html
http://www.atarimania.com/game-atari-2600-vcs-space-invaders_s6947.html
http://www.atarimania.com/game-atari-2600-vcs-ms-pac-man_s6876.html
https://github.com/CodeReclaimers/neat-python
https://github.com/CodeReclaimers/neat-python/blob/4928381317213ee3285204ae1f2a086286aa3a10/examples/single-pole-balancing/evolve-feedforward.py
https://github.com/CodeReclaimers/neat-python/blob/4928381317213ee3285204ae1f2a086286aa3a10/examples/single-pole-balancing/config-feedforward
https://github.com/CodeReclaimers/neat-python/blob/4928381317213ee3285204ae1f2a086286aa3a10/examples/single-pole-balancing/test-feedforward.py
https://www.gymlibrary.ml/environments/atari/ms_pacman/


For the config file, I left most of the values alone except for fitness_threshold , pop_size ,

num_inputs , num_hidden , num_outputs , activation_default , and max_stagnation .

I originally had fitness_threshold  set to 200, but the algorithm finished very fast. I realized that 200

was not a very high score for Ms. Pacman.



I played Ms. Pacman myself and found out that 2700 is the score when I eat all the dots. I set the

fitness_threshold  to 2700, but I realized this was a mistake when the fitness was nowhere near 2700

after a good while. At this point, the pop_size  was 50 and the max_stagnation  was 30 so each

generation took a long time and less effective species did not die off quickly.



The algorithm seemed to be reaching fairly high levels of fitness, but it would just not end. I did not know

how to stop the program, but still save the winner.

Because I didn't know how to save it, I just terminated the program. I changed the fitness_threshold  to

a more reasonable number (1000). I also changed the pop_size  to 30 and the max_stagnation  to the

documentation's recommended default of 15. The algorithm was able to reach the fitness_threshold  in

20 generations.

When I ran the winning genome with testneat.py , though, I was a little disappointed in what I saw. I'm

not sure if my expectation was unrealistic, but Ms. Pacman did not move in an efficient way. She moved a

little, collected some dots, and then stopped until a ghost killed her. This happened for all 3 lives, but the

dots collected resulted in the score that met my threshold.

After this, I looked back at the chart from the lecture of different Atari games and their performance versus

humans. I noticed that Ms. Pacman was near the bottom which could explain this behavior.

To plot the performance of the agent, I had to manually take the fitness from the terminal and graph each

one for each generation. NEAT provided numbers for the populations average fitness for that generation as

well as the best fitness for that generation, so I plotted both.



Space Invaders

I wanted to see if the mediocre outcome from Ms. Pacman was because of the limitations of my

implementation of the NEAT algorithm or because the game is Ms. Pacman. I chose Space Invaders because

it is higher up in the chart from the lecture than Ms. Pacman.

I originally ran it with the same config settings as Ms. Pacman, except I changed the fitness_threshold .

I started with the fitness_threshold  as 100 and 200, but the learning was very quick. I then changed it

to 700.

After I changed it to 700, the algorithm took 75 generations to reach that threshold.

I didn't want to manually graph all 75 generations, so I made two graphs: one with the first 21 generations

and one with the last 21 generations.



First 21 Generations vs Average and Best Fitness:


Last 21 Generations vs Average and Best Fitness:


Looking at the rendering of the winner, it seemed like the agent preferred staying in one spot while moving

and it did not try to avoid any of the bullets from the aliens.

I wanted to see if changing the number of hidden layers would do anything so I kept all settings the same

except for changing the number of hidden layers from 2 to 6.

This time, the algorithm only took 21 generations to get 750 points (fitness) which was a significant

improvement over the previous 75 generations.



Here is the graph of generation vs average and best fitness:

I also tried changing the network to a recurrent one from a feedforward one, but did not find significant

changes in performance. This is not shown, but all I did to try it out was change feed_forward  to False

and replace net = neat.nn.FeedForwardNetwork.create(genome, config)  with net =

neat.nn.RecurrentNetwork.create(genome, config)


